Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells.
نویسندگان
چکیده
Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation or if the stem cell origin allowed most cells to behave as cancer stem cells. Cultures of the hMSC-TERT20 strain at population doubling 440 were highly clonogenic (94%). From 110 single-cell clones expanded by 20 population doublings, 6 underwent detailed comparison. Like the parental population, each clone had approximately 1.2 days doubling time with loss of contact inhibition. All retained 1,25-(OH)(2) vitamin D(3)-induced expression of osteoblastic markers: collagen type I, alkaline phosphatase, and osteocalcin. All shared INK4a/ARF gene locus deletion and epigenetic silencing of the DBCCR1 tumor suppressor gene. Despite in vitro commonality, only four of six clones shared the growth kinetics and 100% tumorigenicity of the parental population. In contrast, one clone consistently formed latent tumors and the other established tumors with only 30% penetrance. Changing the in vitro microenvironment to mimic in vivo growth aspects revealed concordant clonal heterogeneity. Latent tumor growth correlated with extracellular matrix entrapment of multicellular spheroids and high procollagen type III expression. Poor tumorigenicity correlated with in vitro serum dependence and high p27(Kip1) expression. Aggressive tumorigenicity correlated with good viability plus capillary morphogenesis on serum starvation and high cyclin D1 expression. Thus, hMSC-TERT20 clones represent cancer stem cells with hierarchical tumorigenicity, providing new models to explore the stem cell hypothesis for cancer.
منابع مشابه
Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملLooking for immortality: Review of phytotherapy for stem cell senescence
Objective(s): In this paper, we discussed natural agents with protective effects against stem cell senescence. Different complications have been observed due to stem cell senescence and the most important of them is “Aging”. Senescent cells have not normal function and their secretary inflammatory factors induce chronic inflammation in body which causes different patho...
متن کاملStudy of telomerase activity, proliferation and differentiation characteristics in umbilical cord blood mesenchymal stem cells
In recent years, considerable advances have been made in the field of regenerative medicine. Unlikeembryonic stem cells, which pose the problems of ethical concerns and cause severe immunological reactions as well as neoplasma formation after transplantation, umbilical cord blood is a primitive source ofmesenchymal stem cells that covers the benefits of both embryonic and adult stem cells. It h...
متن کاملارتباط بین فعالیت تلومرازی و کینتیک رشد سلولهای بنیادی مزانشیمی بند ناف انسان
Background: Telomerase as an enzyme with reverse transcriptase activity has an essential role in telomere maintenance by adding a telomere repeat sequence to the 3' end of chromosome and is important for regulating of many processes in embryonic development including cell proliferation and differentiation. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with a self-renewal capaci...
متن کاملP 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes
Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 8 شماره
صفحات -
تاریخ انتشار 2005